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A knowledge-based pattern recognition approach for the prediction of
bubble size distribution in Newtonian fluids at high pressure
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Abstract

The knowledge-based pattern recognition (KE) approach provides a basis for classification of state of fluid systems. The new method
determines bubble size distribution at high pressure that is very important for the brewery industry and other alcoholic beverages (champagne).
Conforming to the principle of “decreasing precision with increasing intelligence”, the KE approach has been applied to the determination of
bubble size distribution. An important feature of these architectures is that they do not require global mathematical modeling of the system.
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. Introduction

It has been understood that the bubbling phenomena in the
olumn has been one of the important factors in determin-
ng the levels of heat and mass transfer coefficients, thereby
etermining the performance of the bubble column reactors
r contactors. However, little attention has been paid to the
rediction of the bubble distribution mode at the distributor
n the bubbling phenomena as well as transport phenomena

n the pressurized bubble columns of a liquid medium. The
esultant bubbling and complex flow behavior in multiphase
ow systems have been successfully manipulated and inter-
reted by analyzing the fluctuations of their state variables
uch as pressure and temperature[1–3]. There are a wide
ariety of bubble measurement techniques that have been
sed in other areas[4] categorizes these techniques into three
roups:

. optical techniques (photography);

. measurement of bubble volume (ultrasound/isokinetic
sampling probes);

3. measurement of bubble penetration length along the
where most movement takes place (bubble probes/o
fiber).

The simplest and commonest technique is however
tography (this technique is used in this paper as compa
method). Photography has its own limitations, for exam
images can only be obtained near the wall and also it is
a two-dimensional representation of a 3-D object. Howe
previously the major limitation of photography has bee
the image processing. It is now feasible to take a large n
ber of still images or a video and download them dire
onto a PC. Here the images can be saved, discarded o
lyzed, either manually or in certain cases automaticall
the development of suitable imaging algorithms. Comp
aided image analysis has been applied by many resear
including those looking at bubble phenomenon. The pre
paper deals with the development of knowledge-based
tern recognition as alternative method for the prediction o
bubble size distribution. This approach provides a basi
classification based on structural states. The data obtain
∗ Corresponding author. Tel.: +1 868 6622002; fax: +1 868 6624414.
E-mail address:criverol@eng.uwi.tt (C. Riverol).

such knowledge-based technique is compared with the opti-
cal technique (photography).
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Nomenclature

d diameter
dc credibility coefficient
FC maximum value in the rule premise
g gravity
uf mean
v velocity
w weight
x distance between real value and center in the

Gaussian membership function

Greek letters
µ viscosity
µij membership function
ρ density
σf standard deviation

Isokinetic probes[5], involve sucking a small portion of
dispersion from the vessel into a capillary where the bubbles
form elongated slugs. In the case of beer haze, this method is
compromised by continued growth of bubbles in the saturated
solution [6]. Ultrasound requires a relatively dilute system
and is compromised by re-scattering. In certain cases, ultra-
sound itself initiates bubble nucleation, which will affect the
beer process[7].

Optical fiber probes[6] and electrical probes make use
of differences in properties of the bubble and medium, to
make local measurements of bubble penetration length and
gas hold-up. These techniques have a minimum measurable
bubble size and intrude into the vessel, which may later the
gas–liquid flow pattern[4,6]. A fiber optic probe has been
designed to measure solid holdup, bubble size, bubble rising
velocity, particle rising velocity in both gas–solid and three-
phase systems. The probe utilizes the difference in refractive
index of gas and liquid to distinguish the gas phase from the
liquid–solid suspension. The probe is of U-shape and there
are variations in the tip designs for U-shaped probes to obtain
maximum internal light reflection intensity for multiphase
flow measurements. In the present probe, the fiber cladding
in the tip portion is partially removed in such a manner that it
yields the most distinctive signals for gas void detection. The
output of the photomultiplier is interfaced with a computer
data acquisition system, which samples the signal for four
s
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2. Classification of the structural state

The most important task in knowledge-based recognition
procedure is the conversion of input process variables into
features. The second is the translation of the classification
logic expressed initially in natural linguistic form into a trans-
parent recognition algorithm that yields from the structural
variables membership to different classes. For the initial rep-
resentation of the recognition algorithm, we consider a set of
diagnosis rules that link the variables to the fluid system:

IF µ11(xj) andµ12(xj) . . ., THEN (the process structural
state belongs to State1)
IF µ21(xj) andµ22(xj) . . ., THEN (the process structural
state belongs to State2)
IF µn1(xj) andµn2(xj) . . ., THEN (the process structural
state belongs to Staten)

whereµij (xj) is the fuzzy membership function and Staten
is the subspace of the process. Two subspaces have been rec-
ognized:

• Bubble nucleation (State1)
The data at time zero could be used to estimate the num-

ber of bubbles produced during pouring, which in turn
could be used to give a mean number of bubbles produced

•
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econds at a frequency of 2000 Hz.
The probe is calibrated against the bubble rise velo

easured with a video camera. The probe is movable i
adial direction under high pressure conditions, so tha
ip and the orifice can be precisely aligned. This feature
ermits observation of the influence of the tip on the bu
ow or jetting phenomena. Based on visualization, the p
s found to impose negligible disturbances on the bubble

ation process and the bubbling-jetting transition, altho
t would alter the trajectories of bubbles.
per second (dividing by the pouring time).
Bubble growth (State2)

By comparing the data at consecutive time points
evolution of the bubble size distribution could be obser
Local vertical velocities were estimated using Stoke’s(
v = gd2
ρ

18µ

)
for each of the measured bubbles.

The states need to be transformed into an algorith
llows translation of the symbolic information into a nume
lgorithm improving considerably their real response.

his, the following norm was adopted:∑
wijµi = dci∑
wij = CFi

(1)

herewij are weight coefficients expressing the importa
f the corresponding fuzzy membership and dci are func-

ions formalizing the membership set (credibility). The no
mplies that every fact contributes additively and with
erent weight to the overall certainty of the rule construct
n important step in the creation of the recognition proce
onsists of determining the unknown weight coefficientswij.
hey can be estimated by linear regression using a tra
et composed of a time-series of the structural variable
he credibility coefficient (dci). The proper regression proc
ure was constructed using[5,6]. Its application to the rul
ystem results in a set of equations as follows:

IF bubble velocity is low AND bubble diameter is low a
pressure is zero, THEN bubble distribution is low (cred
ity 1.0);
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Table 1
Membership fuzzy values

Variable Segments uf σf Primary
fuzzy sets

Bubble velocity (mm s−1) [−2.0, 0.2] −0.9 0.3 Low
[0.2, 0.7] 0.03 0.3 Zero
[0.1, 1.0] 0.5 0.2 High

Bubble diameter (mm) [−1.0, 0.9] −0.7 0.3 Low
[0.2, 0.6] 0.1 0.3 Zero
[0.4, 1.0] 0.55 0.2 High

Gas flow (L min−1) [−1.0, 0.7] −0.77 0.4 Low
[0.2, 0.7] 0.05 0.3 Zero
[0.5, 1.0] 0.43 0.3 High

Pressure (kPa) [−1.0, 0.0] −0.4 0.2 Low
[−0.2, 0.7] 0.5 0.2 Zero
[0.2, 1.0] 0.6 0.2 High

Liquid volume (L) [−1.0, 0.1] −0.6 0.3 Low
[0.2, 0.6] 0.5 0.2 Zero
[0.4, 1.0] 0.5 0.2 High

Bubble distribution (%) [−1.0, 0.2] −0.8 0.3 Low
[0.2, 0.6] 0.05 0.3 Zero
[0.4, 1.0] 0.5 0.2 High

IF bubble velocity is low AND bubble diameter is high and
pressure is zero, THEN bubble distribution is high (credi-
bility 1.0);
IF bubble velocity is low AND bubble diameter is zero and
pressure is zero, THEN bubble distribution is zero (credi-
bility 1.0);
IF bubble velocity is high AND bubble diameter is high and
pressure is zero, THEN bubble distribution is high (credi-
bility 1.0);
IF bubble velocity is low AND bubble diameter is zero and
pressure is high, THEN bubble distribution is zero (credi-
bility 1.0).

The rest of the combinations are considering with credi-
bility 0.5. The partition of the continuous universe requires
a priori knowledge of the input/output space. InTable 1a
functional definition expresses the membership function in
a Gaussian shaped function. The functional definition can
readily be adapted to a change in the universe. The functional
definition was expressed as:

µf = exp

[
−(x − uf )2

2σ2
f

]
(2)

3. Experimental set up
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Table 2
Variable specifications

Variable Range

Pressure (kPa) 200–400
Gas flow (L min−1) 1.8–6.9
Alcohol content (g L−1) 95.9 (champagne approximately) and

53.1 (beer approximately)

the visualization of bubble characteristics. Each window is
10.0 mm in width and 83 mm height. A perforated plate with
96 pitches holes of 1.0 mm diameter is used as gas distrib-
utor. The high pressure is controlled using a back-pressure
regulator installed at the outlet of the bubble column. The
hydro-alcoholic solution is held within the pressure vessel
and it was saturated to a pre-determined dissolved concen-
tration of nitrogen (15%) and carbon dioxide (85%). The
hydro-alcoholic solution was then ejected through the nozzle.
The different variables are specified inTable 2. The bubble
column has rectangular sides for avoid any distortion when
viewing the bubbles.

4. Results and discussion

Figs. 2 and 3show the bubble size distribution under var-
ious velocities at 200 kPa and the maximum stable bubble
size at different pressures. InFig. 2; the bubble size distribu-
tions are determined using the KE approach to 30 s intervals.
The bubble diameter increases with the time and gas flow.
The increase in median bubble diameter is as expected since
the super-saturation. The breakage has been described by
combining the collision frequency between the bubbles. The
fact that KE approach neglects the physical processes affect-
ing the probability of breakage, it is mathematically more
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The equipment is depicted inFig. 1. A stainless steel hig
ressure column with an inner diameter of 9.96 cm a
eight of 88.12 cm in the straight section was used.
olumn has an expanded section that serves to reduc
uperficial liquid velocity before the liquid exits the colum
our pairs of quartz windows with polyethylene seals

nstalled on the front and rear sides of the column to a
avorable compared to many physical models. It prod
ero probability for infinitely small daughter bubbles and
aughter bubbles equal to the size of mother bubble.Fig. 3

ndicates that the maximum stable bubble size can be
ated by KE approach at pressures higher than 150 k

ower pressures other models cited in the literature sh
e used. As the pressure increases, the gas density inc
nd the surface tension decreases, thus bubbles are le
le. The median bubble diameter was calculated using
pproach and compared using photography and the re
hown inTable 3.

As shownTable 3, the bubble formation rate increas
hen the gas flow increases, although the bubble form

ates decreases inversely with the pressure. In fact,Fig. 4
llustrates the effect of the velocity to bubble size. As for
ubble diameter, if the system is working at high pressure
E approach decreases its accuracy because the fluct
f the liquid phase caused by bubbles is damped out a
ressure increases. Although the coalescence was est

o both states in the KE approach using[7,8], the accuracy ha
ot been improved. The velocity of each individual bub

n a bubble cloud is a combination of erratic small velocit
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Fig. 1. Diagram of the bubble column.

The vertical velocity was calculated using Stoke’s law; see
Fig. 4 [9]. The vast majority of bubble velocities were below
those defined by stokes law. It is likely that there is grouping
among bubbles measured at different points of time suggest-

Fig. 2. Estimated bubble diameter at 200 kPa and 4.5 L min−1.
Fig. 3. Maximum stable diameter at 6.9 L min−1: experimental data vs. pre-
dictions.
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Table 3
Comparison of bubble diameter vs. pressure at different gas flows

Pressure: 200 kPa
Gas flow (L min−1) 1.8 2.9 4.5 6.9
Bubble diameter (mm) 0.06 0.06 0.09 0.10
Bubble diameter (KE) (mm) 0.06 0.062 0.071 0.074
Bubble formation rate

(bubble s−1)
90845 190400 590234 98342

Pressure: 300 kPa
Gas flow (L min−1) 1.8 2.9 4.5 6.9
Bubble diameter (mm) 0.03 0.04 0.05 0.07
Bubble diameter (KE) (mm) 0.03 0.035 0.05 0.065
Bubble formation rate

(bubble s−1)
90845 169490 440278 810921

Pressure: 400 kPa
Gas flow (L min−1) 1.8 2.9 4.5 6.9
Bubble diameter (mm) 0.01 0.02 0.04 0.05
Bubble diameter (KE) (mm) 0.01 0.025 0.035 0.047
Bubble formation rate

(bubble s−1)
70845 150300 34412 700200

Fig. 4. Comparison real velocity vs. calculated velocity at 180 kPa.

ing that there is an external factor affecting all the bubble
velocities. Moreover the effects of the coalescence are play-
ing a part in the determination of the overall bubble velocity.
It is worth nothing that the alcohol concentration does not

affect the behavior of the bubbles; the above result was the
same for both systems (beer and champagne).

5. Conclusion

Here we are shown one case where the knowledge-based
approach can be useful in solving bubble size distribution
problems resulting from the intrinsic variability of the system.
The use and validation of the KE approach in the prediction
of the mean bubble diameter indicated that this method was
good enough. However, in uncertain environments, 100%
success can be never be reached such is the case of the
prediction of the vertical velocities as depictedFig. 4. We
consider the continuous accumulation of the knowledge con-
cerning the underlying bubble behavior as our long-term
task for improvement the accuracy and precision of the
method.
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